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Administration

● Assignment 1 grades will be up this weekend.

● Automarker is taking longer to write than I thought.
● Comments.

● Assignment 2 comments.

● Check piazza for clarification.
● You are responsible for good variable name choice and 

docstrings!
● Assignment 3 will be up this weekend.

● Will be a two part assignment.
● Test cases will be due earlier.

● No office hours this Monday.
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Speed Review

● Two ways of judging speed of code.
● Hard testing the speed.

● literally timing the time it takes code to run.

● Analysing the code and roughly seeing how it 
scales with input.
● More generally used at a planning stage.
● Used to choose between several possibly solutions.
● Consider worst case of input.
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What is the complexity of these snippets of 
code?

for key in eg_dict:

    if key == 'a':

        return True

return False

for i in range(len(L)):

    if type(L[i]) == list:

        for elt in L[i]:

            print elt
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What is the complexity of these snippets of 
code?

for key in eg_dict:

    if key == 'a':

        return True

return False

Linear

for i in range(len(L)):

    if type(L[i]) == list:

        for elt in L[i]:

            print elt

Quadratic
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Type Review

● So far we've seen lots of types.
● int, bool, float, str, list, dict.

● A lot of these types have methods.
● str.isupper, list.sort, dict.update, etc.

● This allows us to organise our code much more 
efficiently.
● x.upper() is more readable than set_to_upper(x).
● Allows us to save time.
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Function and Module Review

● Python comes with some built-in functions.
● We make our own based on code that we want 

to reuse.
● We group similar functions in a file.

● These can be shared with other users through 
modules.

● So other people can build larger things ontop of our 
functions.
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Types are useful

● Types allow us to separate our code 
conceptually.
● Even though on some level it is all 0s and 1s, it's 

useful to imagine some of them representing 
integers and some of them representing strings.

● Often times when we design code, we imagine 
certain data structures to represent some meta-
information.
● It would be useful to encode this.
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Classes

● Python allows us to build our own types.
● These are called classes.
● A class is analgous to a type.
● Keep in mind that types have instances.

● Think of the difference between str and 'aaa'.
● Each type can have lots of possible instances.
● When we create our own classes, they will have the 

same property.
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Objects

● An object is an instance of a class.
● An object is to class as 'aaa' is to str.
● Objects allow for good chunking of code.
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Class/Object syntax.

● To make a class we just do:
class Class_name(object):

    block

● class is a keyword and object is a type.
● Class names start with Capital letters by 

convention.
● To create objects or instances of Class_name 

we use:
x = Class_name()



July 26 2011

What do we want from our classes?

● Need to store data.
● like a string stores the actual values, or an integer 

has some value, or a list contains elements, etc.

● Need to be able to easily generate values 
based on the object.
● Like dict.has_key, str.isupper, str.upper, etc.

● Need to be able to easily modify the data in the 
object.
● Like dict.update, list.pop, etc.
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Class data

● Each object can have instance variables.
● And instance variable is some data that is 

associated with a class.

● These variables are created with the following 
syntax
● object_name.instance_var_name = value
● some_patient.name = 'Marek'

● Instance variables are variables, and must obey 
all of the variable naming conventions.

● They also obey all the same mutability rules.
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Class data

● Being able to name instance variables means 
that we can now alter objects.
● Objects are mutable!
● If a function changes an object, that change persists 

after the function call.

● Instance variable names are important, 
because they contribute to the legibility of code.
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What gets evaluated?

● x = Patient()

● x.doctor = 'last_name'

● y = x

● y.name = 'first_name'

● y.doctor

● y = Patient()

● x.name

● y.name = 'other_name'

● x.name

● y.name
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What gets evaluated?

● x = Patient()

● x.doctor = 'last_name'

● y = x

● y.name = 'first_name'

● y.doctor

'last_name'

● y = Patient()

● x.name

'first_name'

● y.name = 'other_name'

● x.name

'first_name'

● y.name

'other_name'
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Class Methods

● So far our objects are only convenient naming 
devices for related bits of data.

● We have no way of doing computation on them 
without writing specific functions to do it.
● So we can to is_upper(x) but not x.isupper().

● To do the latter we need methods.
● These are put in the block of code under the 

class definition.
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Class syntax redux

class Class_name(object):

    block

● The block contains methods.
● A method has the syntax:

def method_name(self, parameters):

    block

● Where block is any legal python code.
● What is self?
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Self

● What is self?
● Imagine writing code for list.count.

● Recall L.count(1) returns the number of 
occurrences of 1 in the list L.

● So obviously the result depends on the values of L.

● If we just have def count(x): we have no 
way of determining the values of L.
● self is a keyword that refers to the object that is 

being used to call the method.
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Class methods

● self is always implicitly passed.
● This means we don't need to pass it explicitly.
● Consider having the following method:

class Patient(object):

def set_age(self, age):
   self.age = age

● To call set_age we use p1.set_age(10), 
not p1.set_age(p1,10).
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Break, the first.
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Write a method to implement list.count

● Assume self is a list.
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Write a method to implement list.count

Assume self is a list.

def count(self, in_elt):

    number = 0

    for elt in self:

        if elt == in_elt:

            number += 1

    return number
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Class Methods vs. Functions

● Any method can be rewritten as a function with 
more than one variable.

● When to choose methods, and when to choose 
functions?
● No hard and fast rule.
● Generally, any task that has one 'core' object should 

be written as a method.  
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Class conventions.

● Class names start with upper case letters.
● Class methods and instances start with lower 

case letters.
● Method definitions should have docstrings just 

like function definitions.
● Methods that you don't want users calling should 

begin with an underscore.

● Classes should have docstrings just like 
modules have docstrings that describe what the 
class does.
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Can we initialise data?

● Thus far we've needed to design a class, and 
then add all the data we want for each instance 
by hand.

● This is not necessary, we can create instances 
of classes with data already added.
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Class Constructors.

● The special method __init__ is called whenever 
you try to create an instance of an object.

● Such methods are called constructors.

class Patient(object):

def __init__(self, name, age):

    self.name = name

    self.age = age

● Called by x = Patient(“Joey”, 10)
● Then our patient already has these two instance 

variables set and initialised.
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What gets evaluated?

● x = Patient('name','MD')

● y = x

● y.name = 'first_name'

● y.doctor

● y = Patient('o_nm','md')

● x.name

● y.name = 'other_name'

● y.name

● y.doctor
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What gets evaluated?

● x = Patient('name','MD')

● y = x

● y.name = 'first_name'

● y.doctor

'MD'

● y = Patient('o_nm','md')

● x.name

'first_name'

● y.name = 'other_name'

● y.name

'other_name'

● y.doctor

'md'
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Object Oriented-Programming

● OO programming is the idea that when you 
have a problem, the first step to solving it is to 
decide on what objects you will need to solve it.
● In some sense it means putting the emphasis on 

the data structures needed to solve the problem.

● It means that the main solution to the problem 
tends to be some object that is initialised and 
has methods callsed.

● Three commonly stated advantages to OO 
programing - polymorphism, encapsulation, and 
inheritance. 
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Polymorphism

● Polymorphism is the idea of getting different 
types to behave in similar ways.
● We saw that we can loop over lists and strings.
● Also in labs we saw that we can loop over pixels.
● Objects of different classes can be initialised in the 

same way.

● Objects allow polymorphism because there are 
'special' methods that when implemented cause 
types to behave like native python types.
● We won't really focus on this.
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Class methods: Special Methods.

● __ indicates that the method is a special 
method.

● These are used to make our classes work more 
like Python's built-in types.

● For example:
● __str__ is used when printing
● __cmp__ is used to allow boolean operations.
● __add__ is used to allow the + operator.
● __iter__ is used to allow your type to be used in 

for loops. 
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Classes - Encapsulation

● One of the big benefits of classes is that they 
hide implementation details from the user.

● We call this encapsulation.
● A well designed class has methods that allow 

the user to get out all the information they need 
out of it.
● This allows a user to concentrate on their code 

rather than on your code.

● This also frees you to change the internal 
implementation of the class.
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Classes - Encapsulation

● Encapsulation is one of the reasons why 
docstrings are important.
● If docstrings are poorly written, encapsulation not 

longer works properly.
● And documentation may need to be rewritten if the 

code is rewritten.

● Encapsulating well means understanding the 
difference between what the code is 
representing, and how the code is written.
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The Structure of Programming.

● We want our programs to be both reusable and 
extendable.

● Reusable means that other people can easily 
take our code and use it for their problems.

● Extendable means that it's easy to modify our 
code to handle new issues that come up.

● How do we resolve the tension between the 
two? 
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Classes - Inheritance

● We want a way to allow modifications to 
existing code, that don't alter the ability of 
existing code to run.

● One way we could do this is to write a new 
class that copies the old class plus has some 
new functions.

● This is a lot of work, especially if you decide to 
change the old class down the road.

● Also breaks encapsulation.
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Classes - Inheritance

● Instead we can use Inheritance.
● Classes are allowed to inherit methods and 

variables from other classes.
● If class A inherits from class B, then class B is 

called the superclass, and class A the subclass.
● Classes inherit all of the methods and variables 

in the superclass.
● One can overwrite or add new methods in the 

subclass as appropriate.
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Classes – Inheritance

● The syntax for creating subclasses is:
● class Class_name(Superclass_name):

    block

● Note that this means our previous class is a 
subclass of the class object.

● If you define a method with the same name as 
one in the superclass, you overwrite it.
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Classes - Inheritance

● Inheritance is a really powerful tool that is easy 
to abuse.

● Inheritance should be used to represent 'is-a' 
relations.
● So a PhysioPatient is a type of Patient.
● A mammal is a type of animal.
● A party is a type of event.

● When coming up on to a new problem, a 
common first step is to think about class 
structures and what objects you'll need.
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Classes - Inheritance

● It may be that the best structure for a program 
has several different classes, only some of 
which inherit from eachother.

● It maybe that you just need a bunch of classes 
that all inherit from object,

● It maybe that you will have one super class 
from which everything inherits.

● But you should never 
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Classes - summary

● Classes are user-built types.
● Objects are instances of those types.
● These behave like every other type in python.
● You can add objects to lists, dictionaries and so on.

● Classes have 3 main advantages.
● polymorphism
● encapsulation
● inheritance
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