
CSC 108H: Introduction to Computer
Programming

Summer 2012

Marek Janicki

July 26 2011

Administration

● Assignment 1 grades will be up this weekend.

● Automarker is taking longer to write than I thought.
● Comments.

● Assignment 2 comments.

● Check piazza for clarification.
● You are responsible for good variable name choice and

docstrings!
● Assignment 3 will be up this weekend.

● Will be a two part assignment.
● Test cases will be due earlier.

● No office hours this Monday.

July 26 2011

Speed Review

● Two ways of judging speed of code.
● Hard testing the speed.

● literally timing the time it takes code to run.

● Analysing the code and roughly seeing how it
scales with input.
● More generally used at a planning stage.
● Used to choose between several possibly solutions.
● Consider worst case of input.

July 26 2011

What is the complexity of these snippets of
code?

for key in eg_dict:

 if key == 'a':

 return True

return False

for i in range(len(L)):

 if type(L[i]) == list:

 for elt in L[i]:

 print elt

July 26 2011

What is the complexity of these snippets of
code?

for key in eg_dict:

 if key == 'a':

 return True

return False

Linear

for i in range(len(L)):

 if type(L[i]) == list:

 for elt in L[i]:

 print elt

Quadratic

July 26 2011

Type Review

● So far we've seen lots of types.
● int, bool, float, str, list, dict.

● A lot of these types have methods.
● str.isupper, list.sort, dict.update, etc.

● This allows us to organise our code much more
efficiently.
● x.upper() is more readable than set_to_upper(x).
● Allows us to save time.

July 26 2011

Function and Module Review

● Python comes with some built-in functions.
● We make our own based on code that we want

to reuse.
● We group similar functions in a file.

● These can be shared with other users through
modules.

● So other people can build larger things ontop of our
functions.

July 26 2011

Types are useful

● Types allow us to separate our code
conceptually.
● Even though on some level it is all 0s and 1s, it's

useful to imagine some of them representing
integers and some of them representing strings.

● Often times when we design code, we imagine
certain data structures to represent some meta-
information.
● It would be useful to encode this.

July 26 2011

Classes

● Python allows us to build our own types.
● These are called classes.
● A class is analgous to a type.
● Keep in mind that types have instances.

● Think of the difference between str and 'aaa'.
● Each type can have lots of possible instances.
● When we create our own classes, they will have the

same property.

July 26 2011

Objects

● An object is an instance of a class.
● An object is to class as 'aaa' is to str.
● Objects allow for good chunking of code.

July 26 2011

Class/Object syntax.

● To make a class we just do:
class Class_name(object):

 block

● class is a keyword and object is a type.
● Class names start with Capital letters by

convention.
● To create objects or instances of Class_name

we use:
x = Class_name()

July 26 2011

What do we want from our classes?

● Need to store data.
● like a string stores the actual values, or an integer

has some value, or a list contains elements, etc.

● Need to be able to easily generate values
based on the object.
● Like dict.has_key, str.isupper, str.upper, etc.

● Need to be able to easily modify the data in the
object.
● Like dict.update, list.pop, etc.

July 26 2011

Class data

● Each object can have instance variables.
● And instance variable is some data that is

associated with a class.

● These variables are created with the following
syntax
● object_name.instance_var_name = value
● some_patient.name = 'Marek'

● Instance variables are variables, and must obey
all of the variable naming conventions.

● They also obey all the same mutability rules.

July 26 2011

Class data

● Being able to name instance variables means
that we can now alter objects.
● Objects are mutable!
● If a function changes an object, that change persists

after the function call.

● Instance variable names are important,
because they contribute to the legibility of code.

July 26 2011

What gets evaluated?

● x = Patient()

● x.doctor = 'last_name'

● y = x

● y.name = 'first_name'

● y.doctor

● y = Patient()

● x.name

● y.name = 'other_name'

● x.name

● y.name

July 26 2011

What gets evaluated?

● x = Patient()

● x.doctor = 'last_name'

● y = x

● y.name = 'first_name'

● y.doctor

'last_name'

● y = Patient()

● x.name

'first_name'

● y.name = 'other_name'

● x.name

'first_name'

● y.name

'other_name'

July 26 2011

Class Methods

● So far our objects are only convenient naming
devices for related bits of data.

● We have no way of doing computation on them
without writing specific functions to do it.
● So we can to is_upper(x) but not x.isupper().

● To do the latter we need methods.
● These are put in the block of code under the

class definition.

July 26 2011

Class syntax redux

class Class_name(object):

 block

● The block contains methods.
● A method has the syntax:

def method_name(self, parameters):

 block

● Where block is any legal python code.
● What is self?

July 26 2011

Self

● What is self?
● Imagine writing code for list.count.

● Recall L.count(1) returns the number of
occurrences of 1 in the list L.

● So obviously the result depends on the values of L.

● If we just have def count(x): we have no
way of determining the values of L.
● self is a keyword that refers to the object that is

being used to call the method.

July 26 2011

Class methods

● self is always implicitly passed.
● This means we don't need to pass it explicitly.
● Consider having the following method:

class Patient(object):

def set_age(self, age):
 self.age = age

● To call set_age we use p1.set_age(10),
not p1.set_age(p1,10).

July 26 2011

Break, the first.

July 26 2011

Write a method to implement list.count

● Assume self is a list.

July 26 2011

Write a method to implement list.count

Assume self is a list.

def count(self, in_elt):

 number = 0

 for elt in self:

 if elt == in_elt:

 number += 1

 return number

July 26 2011

Class Methods vs. Functions

● Any method can be rewritten as a function with
more than one variable.

● When to choose methods, and when to choose
functions?
● No hard and fast rule.
● Generally, any task that has one 'core' object should

be written as a method.

July 26 2011

Class conventions.

● Class names start with upper case letters.
● Class methods and instances start with lower

case letters.
● Method definitions should have docstrings just

like function definitions.
● Methods that you don't want users calling should

begin with an underscore.

● Classes should have docstrings just like
modules have docstrings that describe what the
class does.

July 26 2011

Can we initialise data?

● Thus far we've needed to design a class, and
then add all the data we want for each instance
by hand.

● This is not necessary, we can create instances
of classes with data already added.

July 26 2011

Class Constructors.

● The special method __init__ is called whenever
you try to create an instance of an object.

● Such methods are called constructors.

class Patient(object):

def __init__(self, name, age):

 self.name = name

 self.age = age

● Called by x = Patient(“Joey”, 10)
● Then our patient already has these two instance

variables set and initialised.

July 26 2011

What gets evaluated?

● x = Patient('name','MD')

● y = x

● y.name = 'first_name'

● y.doctor

● y = Patient('o_nm','md')

● x.name

● y.name = 'other_name'

● y.name

● y.doctor

July 26 2011

What gets evaluated?

● x = Patient('name','MD')

● y = x

● y.name = 'first_name'

● y.doctor

'MD'

● y = Patient('o_nm','md')

● x.name

'first_name'

● y.name = 'other_name'

● y.name

'other_name'

● y.doctor

'md'

July 26 2011

Object Oriented-Programming

● OO programming is the idea that when you
have a problem, the first step to solving it is to
decide on what objects you will need to solve it.
● In some sense it means putting the emphasis on

the data structures needed to solve the problem.

● It means that the main solution to the problem
tends to be some object that is initialised and
has methods callsed.

● Three commonly stated advantages to OO
programing - polymorphism, encapsulation, and
inheritance.

July 26 2011

Polymorphism

● Polymorphism is the idea of getting different
types to behave in similar ways.
● We saw that we can loop over lists and strings.
● Also in labs we saw that we can loop over pixels.
● Objects of different classes can be initialised in the

same way.

● Objects allow polymorphism because there are
'special' methods that when implemented cause
types to behave like native python types.
● We won't really focus on this.

July 26 2011

Class methods: Special Methods.

● __ indicates that the method is a special
method.

● These are used to make our classes work more
like Python's built-in types.

● For example:
● __str__ is used when printing
● __cmp__ is used to allow boolean operations.
● __add__ is used to allow the + operator.
● __iter__ is used to allow your type to be used in

for loops.

July 26 2011

Classes - Encapsulation

● One of the big benefits of classes is that they
hide implementation details from the user.

● We call this encapsulation.
● A well designed class has methods that allow

the user to get out all the information they need
out of it.
● This allows a user to concentrate on their code

rather than on your code.

● This also frees you to change the internal
implementation of the class.

July 26 2011

Classes - Encapsulation

● Encapsulation is one of the reasons why
docstrings are important.
● If docstrings are poorly written, encapsulation not

longer works properly.
● And documentation may need to be rewritten if the

code is rewritten.

● Encapsulating well means understanding the
difference between what the code is
representing, and how the code is written.

July 26 2011

The Structure of Programming.

● We want our programs to be both reusable and
extendable.

● Reusable means that other people can easily
take our code and use it for their problems.

● Extendable means that it's easy to modify our
code to handle new issues that come up.

● How do we resolve the tension between the
two?

July 26 2011

Classes - Inheritance

● We want a way to allow modifications to
existing code, that don't alter the ability of
existing code to run.

● One way we could do this is to write a new
class that copies the old class plus has some
new functions.

● This is a lot of work, especially if you decide to
change the old class down the road.

● Also breaks encapsulation.

July 26 2011

Classes - Inheritance

● Instead we can use Inheritance.
● Classes are allowed to inherit methods and

variables from other classes.
● If class A inherits from class B, then class B is

called the superclass, and class A the subclass.
● Classes inherit all of the methods and variables

in the superclass.
● One can overwrite or add new methods in the

subclass as appropriate.

July 26 2011

Classes – Inheritance

● The syntax for creating subclasses is:
● class Class_name(Superclass_name):

 block

● Note that this means our previous class is a
subclass of the class object.

● If you define a method with the same name as
one in the superclass, you overwrite it.

July 26 2011

Classes - Inheritance

● Inheritance is a really powerful tool that is easy
to abuse.

● Inheritance should be used to represent 'is-a'
relations.
● So a PhysioPatient is a type of Patient.
● A mammal is a type of animal.
● A party is a type of event.

● When coming up on to a new problem, a
common first step is to think about class
structures and what objects you'll need.

July 26 2011

Classes - Inheritance

● It may be that the best structure for a program
has several different classes, only some of
which inherit from eachother.

● It maybe that you just need a bunch of classes
that all inherit from object,

● It maybe that you will have one super class
from which everything inherits.

● But you should never

July 26 2011

Classes - summary

● Classes are user-built types.
● Objects are instances of those types.
● These behave like every other type in python.
● You can add objects to lists, dictionaries and so on.

● Classes have 3 main advantages.
● polymorphism
● encapsulation
● inheritance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

